Heraeus cosmology summer school

Haus der Astronomie, 2013

Björn Malte Schäfer

Centre for Astronomy + Haus der Astronomie

Fakultät für Physik und Astronomie, Universität Heidelberg

August 18, 2013


intro

- Heidelberg 2013: cosmology
- Padua 2014: active galactic nuclei
- 3 Jena 2015: gravity
- Florenz 2016: star formation

motivation

bring modern astrophysics and fascination for astronomy to schools!

venue 2013: Haus der Astronomie

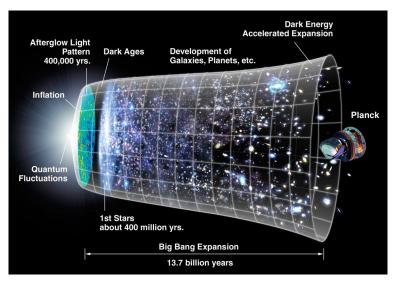
aims of the summer school

- modern cosmology
- explanation of the cosmological standard model
- understanding of the 3 cosmology Nobel prizes
- set current, topical results into relation
- what's behind cosmological observations?
 - cosmic microwave background
 - gravitational lensing
 - galaxy surveys
- topical questions
 - · new developments in cosmology
 - current and future observations
- didactical concepts for teaching cosmology in school

cosmology and philosophy

physical cosmology

is cosmology a branch of science?


- · repeatability of observations given
- a few fundamental assumptions can never be tested
- observations replace experiments, no active participation in natural processes
- observations of statistical quantities
- fundamental statistical limitations, finite size of the observable universe

cosmology: typical questions

- why is the Universe described by general relativity?
- is the Universe really that big?
- is the Universe really that old? (common answer: yes, because gravity is so weak!)
- how do structures emerge? how old is the Milky Way?
- is the Universe expanding? into what is it expanding?
- where did the big bang happen? is there a centre of the Universe?
- can one observe the big bang?
- if the Universe expands, is the distance to the moon getting larger?
- where do the chemical elements come from?
- what exactly is the cosmic microwave background?

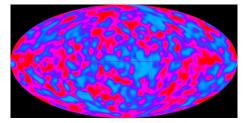
- cosmology is a young branch of astrophysics
- physical cosmology exists for about 80 years now
- quantitative theory for dynamical processes in the Universe
- interdisciplinary: cosmology joins
 - general relativity
 - classical fluid mechanics
 - modern statistics

modern cosmology

time line of cosmology

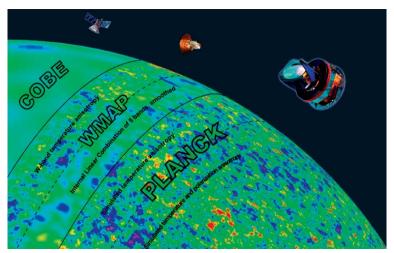
- W. Herschel: star counts, structure of the Milky Way
- E. Hubble: spiral nebulae are galaxies in reality
- H. Shapley, H. Curtis: scale of the Universe
- E. Hubble: motion of galaxies, dynamical world models
- A. Einstein: general relativity
- G. Lemaître: relativistic models of the Universe
- A. Friedmann: expanding cosmologies
- A. Sacharov: synthesis of chemical elements
- J. Peebles: structure formation
- A. Guth: cosmic inflation, initial conditions for structure formation
- M. Rees, S. White: dark matter, ΛCDM-model

intro (cosmology?) cosmic structures numbers... summer school


Nobel prize 1978: Penzias and Wilson

Penzias and Wilson in front of the antenna (source: University of Davidson)

 cosmic microwave background: isotropic radiation at 3K from the formation of the first atoms in the Universe, confirmation of the hot intro


Nobel prize 2006: Smoot and Mather

temperature map of the sky (source: COBE)

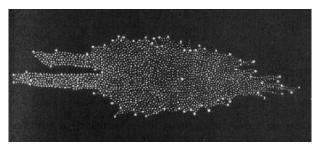
 cosmic microwave background: temperature fluctuations in the microwave temperature, seeds for cosmic structures

resolution of CMB-experiments

resolution of CMB-experiments (source: PLANCK)

intro (cosmology?) cosmic structures numbers... summer school

Nobel prize 2011: Riess, Schmidt and Perlmutter


Supernova (source: Hubble space telescope)

supernova distance-redshift relation, mapping out of the Universe's

Björn Malte Schäfernsion dynamics, evidence for accelerated expansion.

Heraeus cosmology summer school expansion.

first image of the Milky Way

structure of the Milky Way according to W. Herschel (source: wikipedia)

galaxy

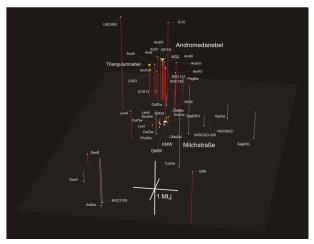

Andromeda galaxy (source: Wendelstein-Observatorium)

galaxies

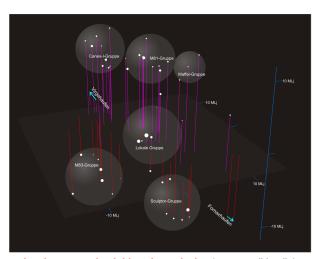
barred spiral galaxy (source: NASA)

galaxies

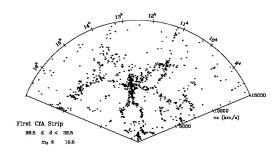
interacting galaxies (source: NASA)


interacting galaxies (source: Arp atlas of peculiar galaxies)

galaxies

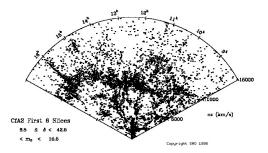

Sombrero galaxy (source: Hubble space telescope)

Milky Way and Andromeda galaxy

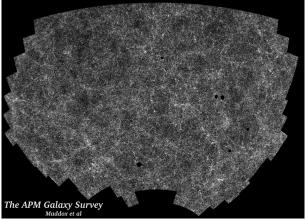

Milky Way and Andromeda galaxy (source: wikipedia)

local group

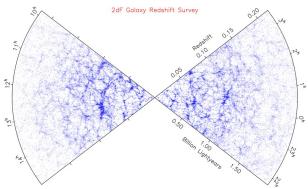
local group and neighbouring galaxies (source: wikipedia)


filamentary structures: the stickman

Copyright SAO 1998

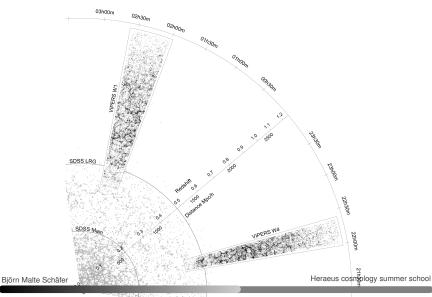

distribution of galaxies (source: CFA, Harvard)

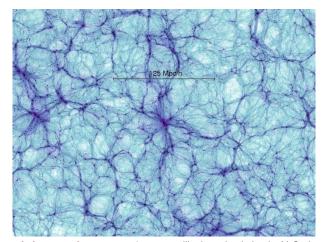
filamentary structures: the great wall


distribution of galaxies (source: CFA, Harvard)

large-scale structure: APM survey

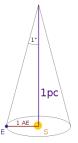
distribution of galaxies (source: APM survey)


large-scale structure: 2dF survey


distribution of galaxies (source: 2dF survey)

intro cosmology? (cosmic structures) numbers... summer school

large-scale structure: VIPER survey


large-scale structure: simulations

cosmic large-scale structure (source: millenium simulation by V. Springel)

numbers...

parsec

cosmic large-scale structure (source: wikipedia)

- a parsec is the distance at which we see the astronomical unit (the mean distance between Earth and Sun) under an angle of 1 arcsecond (= 1/3600 degree)
- 1 parsec = 3×10^{16} meters

numbers...

- distance to the next stars: few pc
- size of the Milky Way: 40 kpc
- size of a cluster of galaxies: 1 Mpc
- scale of the Universe: $c/H_0 = 3$ Gpc
- furtherst "object" we can see (microwave background): 15 Gpc

ages of objects in the Universe

- · age of the dinosaurs: 100 million years ago
- oldest fossils on Earth: 3.4 billion years
- oldest rocks on Earth: 4 billion years
- Earth: 4.5 billion years
- Sun: 4.6 billion years
- oldest stars: 13.2 billion years
- age of the Universe: 13.8 billion years

numbers...

Planck system of units

- in physics, we're only interested in things that can be quantified in terms of mass, time, distance and temperature
- Nature provides a scale for measuring these quantities in terms of
 - 1 speed of light c
 - **2** gravitational coupling constant G/c^2
 - Planck constant ħ
 - Boltzmann constant k_B
- these constants can be combined to form the Planck-units:
 - 1 Planck length $l_p = \sqrt{\frac{\hbar G}{c^3}} \simeq 10^{-35} \text{m}$
 - 2 Planck time $t_p = \frac{l_p}{c} \simeq 10^{-44} \text{s}$
 - 3 Planck mass $m_p = \sqrt{\frac{c\hbar}{G}} \simeq 2 \times 10^{-8} \text{kg} \simeq 10^{16} \text{GeV}/c^2$
 - 4 Planck temperatuer $T_p = \sqrt{\frac{c^3\hbar}{G}} \simeq 10^{+32} \text{K}$

question:

can we make sense of these numbers???

- before the inflationary epoch, the Universe was in fact described by the Planck scale: the size of the Universe was $1l_p$, typical time scales was $1t_p$, the temperature was $1T_p$
- the Hubble-constant H_0 defines an time scale $t_0 = 1/H_0 = 10^{61} t_p$
- together with Newton's constant G one can define a density $\rho_{\rm crit}=3H_0^2/(8\pi G)=10^{-122}\rho_p$ with the Planck density $\rho_p=m_p/l_p^3$
- a typical temperature today is $T_0 = 3$ K, with $T_0 = 10^{-32} T_p$
- today, the Universe looks very strange in terms of the Planck units

structure of the summer school

we would like to offer 5 lectures on these topics:

- 1 Markus Pössel: fundamentals of cosmology
- 2 Camilla Hansen: nucleosynthesis and chemical elements
- 3 Björn Malte Schäfer: cosmic microwave background
- 4 Andreas Just: distances in astronomy and supernova cosmology
- 6 Björn Malte Schäfer: cosmic large-scale structure

together with a large programme and many activities in Heidelberg

- 1 lecture (ca. 90min)
- exercises (ca. 60min)
- 3 presentation of results (ca. 60 min)
- 4 discussion on didactics (60min)

monday: fundamentals of cosmology

by Markus Pössel

- need for general relativity
- · length, time and density scales
- · concepts of relativity, metric as the key quantity
- Einstein's field equation
- highly symmetric solutions, Friedmann-Lemaître models
- · static and dynamic solutions, curved and flat solutions
- critical density, Hubble's constant
- · cosmic fluids, dark energy and dark matter

monday: concepts of relativity

contributions:

- 1 Huetten (Jena):
 "history of the heliocentric world model"
- 2 Luidl (Heidelberg): "joining the Hubble flow: implications for expanding space"
- Taulien (Heidelberg): "expanding confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe"
- Sperling (Jena): "misconceptions in cosmology"
- Sansonetto (Verona): "Cosmological parameters and the stability of the solutions to the Einstein Field Equations"
- 6 Singh (Padova):

cosmology? cosmic structures numbers... (summer school

tuesday: nucleosynthesis

by Camilla Juul Hansen

- nuclear chemistry
- 3 modes of element synthesis
- stellar synthesis, big bang nucleosynthesis, supernova synthesis
- stellar clocks and the age of the Universe
- spallation processes
- chemical abundances

contributions:

- Mazewsky (Jena): "the standard model of particle physics"
- 2 Lorenz (Heidelberg): "the cosmic microwave background for pedestrians: a review"
- Vitali (Brescia): "Primordial nucleosynthesis: the essential role of the early hot universe to explain the light element abundances"
- 4 Goetz (Jena): "dark matter"
- 6 Baer (Heidelberg): "measurements of quasar redshifts with amateur equipment"

cosmology? cosmic structures numbers... (summer school)

wednesday: break

Heidelberg castle and old bridge (source: Merian)

cosmology? cosmic structures numbers... (summer school)

thursday: distances and supernova cosmology

by Andreas Just

- distances in general relativity
- distance measures, distance-redshift-relations
- · calibration of distances, cosmic distance ladder
- supernova measurements, standard candles
- calibration of supernova lightcurves
- cepheid distances, Hubble keystone project
- Hubble constant and deceleration parameter
- evidence for dark energy or a cosmological constant

thursday: distances and supernova cosmology

contributions:

- 1 Sardella (Florence): "cosmic distance"
- Zeissner (Heidelberg): "a new cosmological distance measure using active galactic nuclei"
- Voelker (Jena): "the distance to the large Magellanic cloud"
- 4 Engelmann (Jena): "cepheid stars as distance indicators"
- 6 Kretzer (Jena): "supernovae as standard candles"

cosmology? cosmic structures numbers... (summer school)

friday: cosmic microwave background

by Björn Malte Schäfer

- adiabatic equation
- thermal history of the Universe
- · epochs in the thermal history, freeze-out
- formation of atoms, release of the microwave background
- anisotropies and CMB measurements
- CMB spectrum, acoustic features
- evidence for spatial flatness, standard rulers
- secondary anisotropies

friday: distances and supernova cosmology

contributions:

- Tegon (Padova): "Uniformity and isotropy tests from Wilhelm Herschel to the SLOAN surveys"
- Vaona (Padova): "From Wilhelm Herschel to the SDSS, two centuries of counts: Uniformity and Isotropy tests"
- Brems (Heidelberg): "gravitational lensing by point masses"
- Palenta (Jena): "gravitational lensing"
- 6 Koentges (Heidelberg): "gravitational lensing by galaxy clusters"

cosmology? cosmic structures numbers... (summer school)

saturday: cosmic large-scale structure

by Björn Malte Schäfer

- large-scale structure, scales, scale similarity
- statistical description, random fields, correlation functions
- · growth of structure and the need for dark matter
- fluid mechanics on the largest scales
- initial conditions for structure formation
- linearity, Gaussianity, homogeneity
- nonlinear structures: halo formation, galaxies
- · galaxy rotation curves: second case for dark matter

cosmology? cosmic structures numbers...

saturday: distances and supernova cosmology

contributions:

- Loreggia (Padova): "Fundamental Plane of Galaxies and Applications of the Virial Theorem as a motivation of the Dark Matter hypothesis and the birth of Stars"
- Chat (Siegen): "cosmology with the Sunyaev-Zel'dovich effect"
- Oeitersen (Siegen): "cosmological parameters from galaxy clusters"
- 4 Krauss (Siegen): "formation of galaxy clusters"
- Weber (Siegen): "dark matter in galaxy clusters"

summer school

proceedings

in preparation:

J. Staude, M. Pössel, O. Fischer, B.M. Schäfer:

Modern cosmology for teachers

in English, German and Italian

all course materials available at:

http://www.mpia-hd.mpg.de/home/poessel