cosmological large-scale structure

cosmology lecture (chapter 10)

Markus Pössel + Björn Malte Schäfer

Haus der Astronomy and Centre for Astronomy Fakultät für Physik und Astronomie, Universität Heidelberg

August 1, 2013

outline

random processes

double pendulum ergodicity and homogeneity Gaussian random fields correlation function Gaussian probability densities

- Iarge-scale structure
- CDM spectrum

cold dark matter

6 structure formation

self-gravitating systems dark matter

repetition

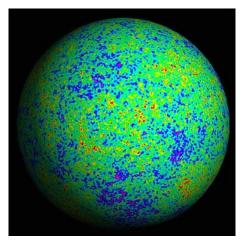
- flat Friedmann-Lemaître cosmologies with matter and a cosmological constant
- thermal history: big bang nucleosynthesis and formation of atoms
- inflation: solution to flatness and horizon problems
- generation of fluctuations in the distribution of matter
 - quantum fluctuations of the inflaton field perturb gravitational field
 - matter and radiation react on the perturbed gravitational field
- fluctuations of the cosmic microwave background
 - at the time of (re)combination of hydrogen atoms
 - temperature of photons depends on motion and potential depth
 - potential fluctuations are the inflationary perturbations
 - gravitational redshift (Sachs-Wolfe effect) and Doppler shifts in photon temperature
- inflationary perturbations are Gaussian, consequence of the central limit theorem

ectrum s

structure formation

summary

inflationary fluctuations in the CMB



source: WMAP

Markus Pössel + Björn Malte Schäfer

random processes

- inflation generates fluctuations in the distribution of matter
 - fluctuations can be seen in the cosmic microwave background
 - seed fluctuations for the large-scale distribution of galaxies
 - amplified by self-gravity
- · cosmology is a statistical subject
- fluctuations form a Gaussian random field
- random processes: specify
 - probability density p(x)dx
 - covariance, in the case of multivariate processes $p(\vec{x})d\vec{x}$
- measurement of p(x)dx by determining moments $\langle x^n \rangle = \int dx \, x^n p(x)$
- cosmology: random process describes the fluctuations of the overdensity

$$\delta = \frac{\rho - \bar{\rho}}{\bar{\rho}} \tag{1}$$

with the mean density $\bar{\rho} = \Omega_m \rho_{\rm crit}$

Markus Pössel + Björn Malte Schäfer

double pendulum

- simple example of a random process
- double pendulum is a chaotic system, dynamics depends **very** sensitively on tiny changes in the initial condition
- random process: imagine you want to know the distribution of φ one minute after starting
 - move to initial conditions and let go
 - wait 1 minute and measure φ (one realisation)
 - repeat experiment \rightarrow distribution $p(\varphi)d\varphi$ (ensemble of realisations)
- 2 more types of data
 - distributions and moments of more than one observable
 - moments of observables across different times

question

write down the Lagrangian, perform variation and derive the equation of motion! show that there is a nonlinearity

Markus Pössel + Björn Malte Schäfer

double pendulum: ergodicity and homogeneity

ergodicity

with time, the dynamics generates values for the observables with the same probability as in the statistical ensemble, $p(\varphi(t))dt \propto p(\varphi)d\varphi$

• time averaging = ensemble averaging, for measuring moments

homogeneity

statistical properties are invariant under time-shifts $\Delta t p(\varphi(t))d\varphi = p(\varphi(t + \Delta t))d\varphi$

- necessary condition for ergodicity
- double pendulum: not applicable if there is dissipation

Gaussian random fields in cosmology

- fluctuations in the density field are a Gaussian random process → sufficient to measure the variance
 - ergodicity: postulated (theorem by Adler)
 - volume averages are equivalent to ensemble averages

$$\langle \delta^n \rangle = \frac{1}{V} \int_V d^3 x \, \delta^n(\vec{x}) p(\delta(\vec{x})) \tag{2}$$

• homogeneity: statistical properties independent of position \vec{x}

$$p(\delta(\vec{x})) \propto p(\delta(\vec{x} + \Delta \vec{x}))$$
 (3)

• the density field is a 3d random field \rightarrow isotropy

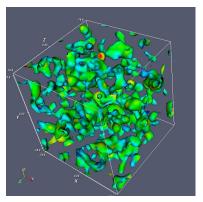
$$p(\delta(\vec{x})) = p(\delta(R\vec{x}))$$
, for all rotation matrices *R* (4)

- finite correlation length: amplitudes of δ at two positions x₁ and x₂ are not independent:
 - covariance needed for Gaussian distribution $p(\delta(\vec{x}_1), \delta(\vec{x}_2))$
 - measurement of cross variance/covariance $\langle \delta(\vec{x}_1) \delta(\vec{x}_2) \rangle$
 - $\langle \delta(\vec{x}_1) \delta(\vec{x}_2) \rangle$ is called correlation function ξ

structure formation

summarv

Gaussian random field



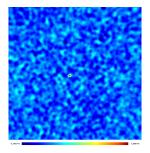
isodensity surfaces, threshold 2.5σ , shading ~ local curvature, CDM power spectrum, smoothed on 8 Mpc/h-scales

ectrum str

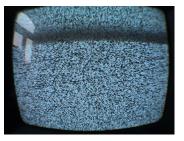
structure formation

summary

statistics: correlation function and spectrum



finite correlation length

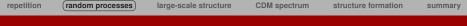


zero correlation length

correlation function

quantification of fluctuations: correlation function $\xi(\vec{r}) = \langle \delta(\vec{x}_1)\delta(\vec{x}_2) \rangle, \ \vec{r} = \vec{x}_2 - \vec{x}_1$ for Gaussian, homogeneous fluctuations, $\xi(\vec{r}) = \xi(r)$ for isotropic fields

Markus Pössel + Björn Malte Schäfer



statistics: correlation function and spectrum

• Fourier transform of the density field

$$\delta(\vec{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \,\delta(\vec{k}) \exp(i\vec{k}\vec{x}) \leftrightarrow \delta(\vec{k}) = \int \mathrm{d}^3 x \,\delta(\vec{x}) \exp(-i\vec{k}\vec{x}) \tag{5}$$

- variance $\langle \delta(\vec{k}_1)\delta^*(\vec{k}_2) \rangle$: use homogeneity $\vec{x}_2 = \vec{x}_1 + \vec{r}$ and $d^3x_2 = d^3r$ $\langle \delta(\vec{k}_1)\delta^*(\vec{k}_2) \rangle = \int d^3r \langle \delta(\vec{x}_1)\delta(\vec{x}_1 + \vec{r}) \rangle \exp(-i\vec{k}_2\vec{r})(2\pi)^3\delta_D(\vec{k}_1 - \vec{k}_2)$ (6)
 - definition spectrum $P(\vec{k}) = \int d^3r \langle \delta(\vec{x}_1)\delta(\vec{x}_1 + \vec{r}) \rangle \exp(-i\vec{k}\vec{r})$
 - spectrum $P(\vec{k})$ is the Fourier transform of the correlation function $\xi(\vec{r})$
 - homogeneous fields: Fourier modes are mutually uncorrelated
 - isotropic fields: $P(\vec{k}) = P(k)$

question

show that the unit of the spectrum P(k) is L^3 ! what's the relation between $\xi(r)$ and P(k) in an isotropic field?

Markus Pössel + Björn Malte Schäfer

Gaussianity and the characteristic function

- for a continuous pdf, all moments need to be known for reconstructing the pdf
- reconstruction via characteristic function $\phi(t)$ (Fourier transform)

$$\phi(t) = \int \mathrm{d}x p(x) \exp(\mathrm{i}tx) = \int \mathrm{d}x p(x) \sum_{n} \frac{(\mathrm{i}tx)^{n}}{n!} = \sum_{n} \langle x^{n} \rangle_{p} \frac{(\mathrm{i}t)^{n}}{n!}$$

with moments $\langle x^n \rangle = \int dx x^n p(x)$

- Gaussian pdf is special:
 - all moments exist! (counter example: Cauchy pdf)
 - all even moments are expressible as products of the variance
 - σ is enough to statistically reconstruct the pdf
 - pdf can be differentiated arbitrarily often (Hermite polynomials)

question

show that for a Gaussian pdf $\langle x^{2n} \rangle \propto \langle x^2 \rangle^n$. what's $\phi(t)$?

Markus Pössel + Björn Malte Schäfer

structure formation

summary

moment generating function

- variance σ^2 characterises a Gaussian pdf completely
- $\langle x^{2n} \rangle \propto \langle x^2 \rangle^n$, but what is the constant of proportionality?
- look at the moment generating function

$$M(t) = \int dx p(x) \exp(tx) = \langle \exp(tx) \rangle_p = \sum_n \langle x^n \rangle_p \frac{t^n}{n!}$$

- *M*(*t*) is the Laplace transform of pdf *p*(*x*), and φ(*t*) is the Fourier transform
- *n*th derivative at t = 0 gives moment (xⁿ)_p:

$$M'(t) = \langle x \exp(tx) \rangle_p = \langle x \rangle_p$$

question

compute $\langle x^n \rangle$, n = 2, 3, 4, 5, 6 for a Gaussian directly (by induction) and with the moment generating function M(t)

Markus Pössel + Björn Malte Schäfer

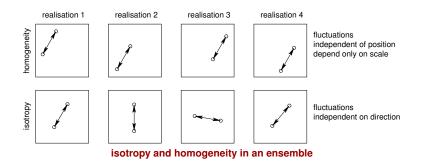
repetition

CDM spectrum

ctrum st

structure formation summary

homegeneity and isotropy in $\xi(r)$



- homogeneity: a measurement of (δ(x̃)δ(x̃ + r̃)) is independent of x̃, if one averages over ensembles
- isotropy: a measurement of (δ(x̄)δ(x̄ + r̄)) does not depend on the direction of r̄, in the ensemble averaging

repetition

CDM spectrum

rum stru

structure formation

summary

why correlation functions?

a proof for climate change and global warming

please be careful: we measure the correlation function because it characterises the random process generating a realisation of the density field, not because there is a badly understood mechanism relating amplitudes at different points! (PS: don't extrapolate to 2014!)

tests of Gaussianity

Gaussianity

all moments needed for reconstructing the probability density

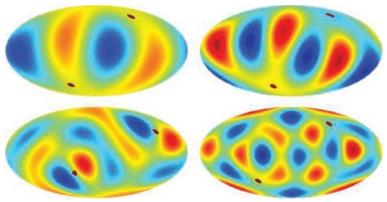
- data is finite: only a limited number of estimators are available
- classical counter example: Cauchy-distribution

$$p(x)dx \propto \frac{dx}{x^2 + a^2}$$
(7)

 \rightarrow all even moments are infinite

- genus statistics: peak density, length of isocontours
- independency of Fourier modes

tests of Gaussianity: axis of evil



CMB axis of evil: multipole alignment

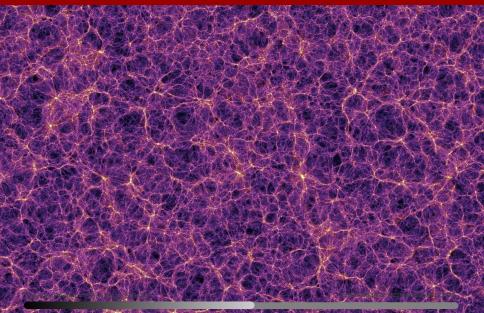
CMB-sky: weird (unprobable) alignment between low multipoles

Markus Pössel + Björn Malte Schäfer

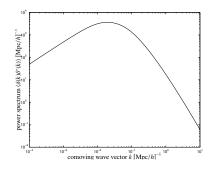
weak and strong Gaussianity

- differentiate weak and strong Gaussianity
- strong Gaussianity: Gaussian distributed amplitudes of Fourier modes
 - implies Gaussian amplitude distribution in real space
 - argumentation: via cumulants
- weak Gaussianity: central limit theorem
 - assume independent Fourier modes, but arbitrary amplitude distribution in Fourier space
 - Fourier transform: many elementary waves contribute to amplitude at a given point
 - central limit theorem: sum over a large number of independent random numbers is Gaussian distributed
 - field in real space is approximately Gaussian, even though the Fourier modes can be arbitrarily distributed

the cosmic web (Millenium simulation)



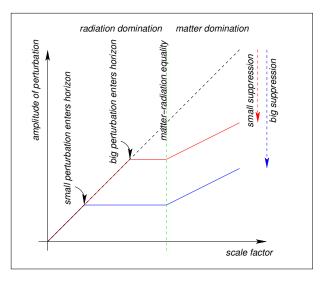
CDM spectrum P(k) and the transfer function T(k)



- ansatz for the CDM power spectrum: $P(k) = k^{n_s}T(k)^2$
- small scales suppressed by radiation driven expansion → Meszaros-effect
- asymptotics: $P(k) \propto k$ on large scales, and $\propto k^{-3}$ on small scales

:trum) stru

Meszaros effect 1



Markus Pössel + Björn Malte Schäfer

Meszaros effect 2

- perturbation grows $\propto a^2$ outside horizon in the radiation-dominated era (really difficult to understand, need covariant perturbation theory)
- when entering the horizon, fast radiation driven expansion keeps perturbation from growing, dynamical time-scale $t_{\rm dyn} \gg t_{\rm Hubble} = 1/H(a)$
- all perturbations start growing at the time of matter-radiation equality (*z* ≃ 7000, Ω_M(*z*) = Ω_R(*z*)), growth ∝ *a*
- size of the perturbation corresponds to scale factor of the universe at horizon entry
- total suppression is $\propto k^{-2}$, power spectrum $\propto k^{-4}$
- exact solution of the problem: numerical solution for transfer function *T*(*k*), with shape parameter Γ, which reflects the matter density

- exact shape of *T*(*k*) follows from Boltzmann codes
- express wave-vector k in units of the shape parameter:

$$q \equiv \frac{k/\mathrm{Mpc}^{-1}h}{\Gamma}$$
(8)

Bardeen-fitting formula for low-Ω_m cosmologies

$$T(q) = \frac{\ln(1 + eq)}{eq} \times \left[1 + aq + (bq)^2 + (cq)^3 + (dq)^4\right]^{-\frac{1}{4}},$$

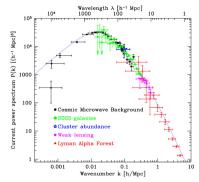
small Γ → skewed to left, big Γ → skewed to right

question

verify the asymptotic behaviour of T(q) for $q \ll 1$ and $q \gg 1$

Markus Pössel + Björn Malte Schäfer

observational constraints on P(k)



data for P(k) from observational probes

- many observational channels are sensitive to P(k)
- amazing agreement for the shape

normalisation of the spectrum: σ_8

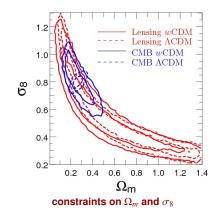
- CDM power spectrum P(k) needs to be normalised
- observations: fluctuations in the galaxy counts on 8 Mpc/h-scales are approximately constant and ≃ 1 (Peebles)
- introduced filter function $W(\vec{x})$
- convolve density field δ(x) with filter function W(x) in real space → multiply density field δ(k) with filter function W(k) in Fourier space
- convention: σ_8 , R = 8 Mpc/h

$$\sigma_8^2 = \frac{1}{2\pi^2} \int_0^\infty \mathrm{d}k \; k^2 P(k) W^2(kR) \tag{9}$$

with a spherical top-hat filter W(kR)

• least accurate cosmological parameter, discrepancy between WMAP, lensing and clusters

lensing and CMB constraints on σ_8



- some tension between best-fit values
- possibly related to measurement of galaxy shapes in lensing

structure formation

summarv

cosmological standard model

cosmology + structure formation are described by:

- dark energy density Ω_φ
- cold dark matter density Ω_m
- baryon density Ω_b
- dark energy density equation of state parameter w
- Hubble parameter h
- primordial slope of the CDM spectrum n_s , from inflation
- normalisation of the CDM spectrum σ_8

cosmological standard model: 7 parameters

known to few percent accuracy, amazing predictive power

properties of dark matter

current paradigm:

structures from by gravitational instability from inflationary fluctuations in the cold dark matter (CDM) distribution

- collisionless \rightarrow very small interaction cross-section
- cold → negligible thermal motion at decoupling, no cut-off in the spectrum *P*(*k*) on a scale corresponding to the diffusion scale
- dark \rightarrow no interaction with photons, possible weak interaction
- matter \rightarrow gravitationally interacting

main conceptual difficulties

- collisionlessness \rightarrow hydrodynamics, no pressure or viscosity
- non-saturating interaction (gravity) \rightarrow extensivity of binding energy

dark matter and the microwave background

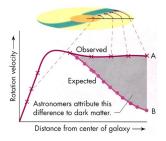
- fluctuations in the density field at the time of decoupling are $\simeq 10^{-5}$
- long-wavelength fluctuations grow proportionally to a
- if the CMB was generated at $a = 10^{-3}$, the fluctuations can only be 10^{-2} today
- large, supercluster-scale objects have $\delta \simeq 1$

cold dark matter

need for a nonbaryonic matter component, which is not interacting with photons

structure formation summarv

galaxy rotation curves



- balance centrifugal and gravitational force
- difficulty: measured in low-surface brightness galaxies
- galactic disk is embedded into a larger halo composed of CDM

question

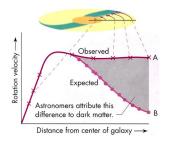
show that the density profile of a galaxy needs to be $\rho \propto 1/r^2$

Markus Pössel + Björn Malte Schäfer

structure formation

summary

galaxy rotation curves



question

realistic haloes are described by the NFW-profile, with 3 regions $\rho \propto 1/r^{\alpha}$ with $\alpha = 1, 2, 3$. can you drive the circular velocity-radius relation in all three regimes?

Markus Pössel + Björn Malte Schäfer

summary

structure formation equations

cosmic structure formation

cosmic structures are generated from tiny inflationary seed fluctuations, as a fluid mechanical, self-gravitating phenomenon (with Newtonian gravity), on an expanding background

· continuity equation: no matter ist lost or generated

$$\frac{\partial}{\partial t}\rho + \operatorname{div}(\rho\vec{v}) = 0 \tag{10}$$

• Euler-equation: evolution of velocity field due to gravitational forces

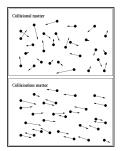
$$\frac{\partial}{\partial t}\vec{v} + \vec{v}\nabla\vec{v} = -\nabla\Phi \tag{11}$$

• Poisson-equation: potential is sourced by the density field

$$\Delta \Phi = 4\pi G \rho \tag{12}$$

Markus Pössel + Björn Malte Schäfer

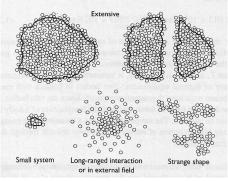
collisionlessness of dark matter



source: P.M. Ricker

- · why can galaxies rotate and how is vorticity generated?
- why do galaxies form from their initial conditions without viscosity?
- how can one stabilise galaxies against gravity without pressure?
- is it possible to define a temperature of a dark matter system?

non-extensivity of gravity



source: Kerson Huang, statistical physics

- gravitational interaction is long-reached
- gravitational binding energy per particle is not constant for $n \to \infty$

- inflation generates seed fluctuations in the (dark) matter distribution
- fluctuations form a Gaussian random field
- description with power spectrum P(k) or correlation function $\xi(r)$
- shape of *P*(*k*):
 - inflation: Harrison-Zel'dovich spectrum $P(k) \propto k^{n_s}$
 - transition from radiation to matter dominated phase: transfer function changes P(k) ∝ k^{ns}T²(k)
 - normalisation: fixed by variance σ_8 on 8 Mpc/h scales
- structures grow by self-gravity:
 - collisionlessness
 - non-extensivity of gravity