
dark matter haloes and
galaxy formation

cosmology lecture (chapter 12)
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repetition

• Friedmann-Lemaı̂tre cosmologies with matter and dark energy for
accelerated expansion

• thermal history of the universe explains element synthesis and the
microwave background

• inflation needed for solving the flatness and horizon-problems, and
provides Gaussian initial fluctuations for structure growth

• growth is linear and homogeneous initially, and conserves the
Gaussianity of the fluctuation field

• later, growth becomes inhomogeneous and nonlinear, destroys
Gaussianity by mode coupling

• galaxy rotation can be explained by tidal torquing, linear flows are
necessarily laminar

• fluid dynamics with dark matter is special:
• gravity is infinitely reached
• collisionlessness→ no pressure, no viscosity
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nonlinearly evolved density field

source: V.Springel, Millenium simulation
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repetition spherical collapse halo density galaxy formation stability merging clusters summary

spherical collapse
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source: F.Pace, collapse in SCDM

• formation of a bound dark matter object: gravitational collapse

• three phase process:
1 perturbation expands with Hubble expansion, but at a lower rate
2 perturbation decouples from Hubble expansion→ turn around
3 perturbation collapses under its own gravity
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density evolution in a collapsing halo

source: Padmanabhan, theoretical astrophysics
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collapse overdensity in different cosmologies
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overdensity needed for a perturbation to collapse at redshift z

• SCDM: collapse overdensity of δc = 1.686, very similar in ΛCDM

• dark energy cosmologies require smaller collapse overdensities

• sensitivity towards dark energy parameters
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relaxation

• in the dynamical evolution, systems tend towards a final state which
is not very sensitive on the initial conditions→ relaxation

• usually, this is accompanied by generation of entropy, which defines
an arrow of time

• in cosmology, galaxies with very similar properties form from a
Gaussian fluctuation in the matter distribution

• but: dark matter is a collisionless fluid!
• no viscosity in Euler-eqn. which can dissipate velocities
• transformation from kinetic energy to heat is not possible
• no Kelvin-Helmholtz instability and Kolmogorov cascading
• Euler-equation is time-reversible and no entropy is generated
• relaxation does not take place

question
show that the Euler-eqn. and the vorticity eqn. are time-reversible
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relaxation: 1. two-body relaxation

two-body relaxation
relaxation with Keplerian (time-reversible) orbits in a succession of
two-body encounters

• consider a system with N stars of size R, density of stars is
n ∼ N/R3, total mass M = Nm

• shoot a single star into the cloud an track its transverse velocity

• in a single encounter the velocity changes

δυ⊥(single) ∼ Gm
b2

2b
υ
∼ 2Gm

bυ
(1)

with impact parameter b, using Born-approx. with δt = 2b/υ

• multiple encounters: add random kicks, so variance δυ2
⊥ grows

d
dt
δυ2
⊥ ∼ 2π

∫
bdb δυ⊥(single) nυ =

8πG2m2n
υ

ln
(

bmax

bmin

)
(2)
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relaxation: 2. dynamical friction

source: J. Schombert

• system of reference with moving particle

• all other particle zoom past on hyperbolic orbits, orbit/gravitational
scattering depends sensitively on the impact parameter

• directed, ordered velocities→ random transverse velocities
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relaxation: 3. violent relaxation

• proposed by Lynden-Bell for explaining the brightness profile of
elliptical galaxie, wipes out structure of spiral galaxies in the
merging

• each particle sees a rapidly fluctuating potential generated by all
particles

dE
dt

=
m
2

dυ2

dt
+
∂Φ

∂t
+ ~υ∇Φ (3)

• dynamic kind of scattering mediated by grav. field

with
dυ2

dt
= 2~υ

d~υ
dt

= − 2
m
~υ∇Φ → dE

dt
=
∂Φ

∂t
(4)

• even particles with initially similar trajectories get separated

violent relaxation
important relaxation mechanism, due to long-reaching gravity
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relaxation: 4. phase space mixing

globular cluster Palomar-5, source: J. Staude

• time evolution of a globular cluster orbiting the Milky Way:
• stars closer to Galactic centre move faster
• stars further away move slower

• with time, the streams get more elongated and eventually form a
tightly wound spiral

dark matter haloes and galaxy formationMarkus Pössel + Björn Malte Schäfer



repetition spherical collapse halo density galaxy formation stability merging clusters summary

relaxation: 4. phase space mixing

• naive interpretation:
system produces structure on smaller and smaller scales (spiral
winds up), eventually crosses thermodynamic scale λ

• but: the system is time-reversible and does conserve full phase
space information

• relaxation does not take place, the system remembers its initial
conditions

• thermodynamic scale is not well defined, gravity is a power law!

• solution: no matter how small the thermodynamic scale is chosen,
the system will always wipe out structures above this scale with time
→ coarse-graining

generation of entropy
phase space density f measured above this scale decreases, and
entropy S ∝ −

∫
d3pd3q f ln f increases
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final state: virialisation

final state
relaxation mechanisms generate a final state which does not
depend on the initial conditions, e.g. a stable galaxy from some
random flucutation in the Gaussian density field

• a virialised object does not evolve anymore and is characterised by
a symmetric phase space distribution→ equipartition, and a
velocity distribution which depends only on constants of motion

• systems are stabilised against gravity by their particle motion,
despite the lack of a microscopic collision mechanism which
provides pressure

• virial relation 2〈T〉 = −〈V〉 between mass, size and temperature

〈υ2〉 = 3σ2
υ =

GM
R
→ M ' 3Rσ2

υ

G
= 1015M�/h

(
R

1.5Mpc/h

) (
συ

1000km/s

)2

(5)
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repetition spherical collapse halo density galaxy formation stability merging clusters summary

stability: density profiles of dark matter objects

• does a final state exist? needs to maximise entropy. . .

• use phase space density f for describing the steady-state
distribution of particles in a dark matter halo

• solution need to be a solution of the collisionless steady-state
(∂f /∂t = 0) Boltzmann-eqn.

df
dt

=
∂f
∂t

+ ~υ∇xf − ∇Φ∇υf = 0 (6)

• and they need to be self consistent: the mass distribution generates
its own potential

∆Φ = 4πGρ with ρ = m
∫

d3υ f (~x, ~υ) (7)

• originally for galactic dynamics, applies for dark matter as well
(collisionlessness)
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self-consistent solutions of dark matter objects

• Ansatz for phase space density f : should depend on the integrals of
motion C, because then f satisfies the steady-state
Boltzmann-equation: df /dt = ∂f /∂C × ∂C/∂t

• shift potential Φ: ψ = −Φ + Φ0, with constant Φ0 (make ψ vanish at
boundary)

• simple approach: phase space density f (~x, ~υ) depends only on
ε = ψ − υ2/2, assumption of spherical symmetry

• matter density ρ for a model follows from

ρ(~x) =

∫ ψ

0
dε 4πf (ε)

√
2(ψ − ε) (8)

• substitute ρ in Poisson equation: ∆ψ = −4πGρ, solve for ψ as a
function of ε, boundary conditions on ψ(0) = ψ0 and ψ′(0) = 0
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singular isothermal sphere

credit: Padmanabhan, theoretical astrophysics

• distribution function, motivated by Boltzmann statistics

f (ε) =
ρ0

(2πσ2)3/2 exp
(
ε

σ2

)
(9)

• properties:
• constant velocity dispersion inside object, σ2 = 3〈υ2〉
• temperature assignment kBT ∝ σ2

• numerical solution to Boltzmann-problem exists, finite core density
• at large radii, ρ ∝ r−2 → flat rotation curve
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repetition spherical collapse halo density galaxy formation stability merging clusters summary

Navarro-Frenk-White profile

question
construct a possible fitting formula for the NFW-profile!
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Navarro-Frenk-White profile

• Navarro, Frenk + White: haloes in n-body simulation show a profile:

ρ ∝ 1
x(1 + x2)

with x ≡ r
rc

and rc = crvir (10)

• universal density profile, applicable to haloes of all masses
• fitting formula breaks down:

• infinite core density
• total mass diverges logarithmically

• very long lived transitional state (gravothermal instability)

• scale radius rs is related to virial radius by concentration parameter c

• c has a weak dependence on mass in dark energy models

question
show that the NFW-profile allows flat rotation curves! what’s the
size of the galactic disk? what happens if the disk is very large?
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number density of collapsed objects

halo formation
haloes form at peaks in the density field→ reflect the fluctuations
statistics in the high-δ tail of the probability density

• valuable source of information on Ωm, σ8, w and h

• prediction of the number density of haloes from the spectrum P(k)
→ Press-Schechter formalism

• relate mass M to a length scale R

M =
4π
3

ΩmρcritR3 (11)

• how often does the density field try to exceed some threshold δc on
the mass scale M?
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Press-Schechter formalism

• consider variance of the convolved density field

σ2
R =

1
2π2

∫
dk k2P(k)W(kR)2 (12)

with a top-hat filter function of size R

• convolved field δ̄ has a Gaussian statistic with the variance σ2
R

p(δ̄, a)dδ̄ =
1√

2πσ2
R

exp
(
− δ̄2

2σ2
R(a)

)
(13)

with σ2
R(a) = σ2

RD+(a)

• condition for halo formation: δ̄ > δc

• fraction of cosmic volume filled with haloes of mass M

F(M, a)
∫ ∞

δc

dδ̄ p(δ̄, a) =
1
2

erfc
(

δc√
2σR(a)

)
(14)
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Press-Schechter formalism

• distribution of haloes with mass M: ∂F(M)/∂M → add relation
between M and R

∂F(M)
∂M

=
1√
2π

δc

σRD+(a)
d lnσR

dM
exp

(
− δc

2σ2
RD2

+(a)

)
(15)

after using the derivative

d
dx

erfc(x) = − 2√
π

exp(−x2) (16)

• comoving number density: divide occupied cosmic volume fraction
by halo volume M/ρ0

n(M, a)dM =
ρ0√
2π

δc

σRD+(a)
d lnσR

d ln M
exp

(
− δ2

c

2σ2
RD2

+(a)

)
dM
M2 (17)

• normalisation is not right by a factor of 2, but there is an elaborate
argument for fixing it
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halo formation as a random walk

source: Bond et al. (1991)

• if the density is smoothed with R = ∞, the mean density of any
perturbation is δ = 0 and ρ = ρ̄ = Ωmρcrit

• reduce filter scale: density field will develop fluctuations

• if a density on scale R exceeds the threshold δc, it will collapse and
form an object of mass M = 4πρ0δR3/3

• at a single point in space: δ as a function of R performs a random
walk (for k-space top-hat filter)

• probability of δ > δc is given by erfc(δc/(
√

2σ(M))
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CDM mass functions
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CDM mass function: comoving number density of haloes (redshifts z = 0, 1, 2, 3)

• shape of mass function: power law with exponential cut-off
• CDM:

• hierarchical structure formation: more massive objects form later
• cut-off scale M∗ ∝ D+(z)3 (dark energy influence!)

• normalisation: ' 100 clusters and ' 104 galaxies in a cube with side
length 100 Mpc/h today (a = 1, z = 0)
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cosmological parameter from cluster surveys

• mass function (comoving number density of haloes of mass M)

n(M, z)dM =

√
2
π
ρ0∆(M, z)

d lnσ(M)
d ln M

exp
(
−∆2(M, z)

2

)
dM
M2 (18)

with ρ0 = Ωmρcrit

• ∆ describes the ratio between collapse overdensity and variance of
the fluctuation strength on the mass scale M:

∆(M, z) =
δc(z)

D+(z)σ(M)
(19)

• comoving space is a theoretical construct, we observe redshifts!

N(z) =
∆Ω

4π
dV
dz

∫ ∞

Mmin(z)
dM n(M, z) (20)

• comoving volume element, with the angular diameter distance dA:

dV
dz

= 4π
d2

A(a)
a2H(a)

(21)
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cosmological parameter from cluster surveys
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cosmological parameters from cluster surveys
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galaxy biasing

GIF-simulation, Kaufmann et al.
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galaxy bias models

• galaxies trace the distribution of dark matter

• simplest (local, linear, static, morphology and scale-indep.) relation:
δn
〈n〉 = b

ρ

〈ρ〉 (22)

with bias parameter b
• bias models:

• massive objects are more clustered (larger b) than low-mass objects
• red galaxies are stronger clustered than blue galaxies
• bias is slowly time evolving and decreases

• physical explanation: galaxies form at local peaks in the dark matter
field, and reflect the local matter density directly

• naturally: ξgalaxy(r) = b2ξCDM(r) for the above model

question
are there more galaxies if b is larger?
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galaxy formation: Jeans instability

• galaxies form by condensation of baryons inside potential wells
formed by dark matter

• cooling process: needs to be fast, for overcoming the negative
specific heat of a self-gravitating system

• hydrostatic equilibrium: balance pressure and gravity

dp
dr

= −GM
r2 ρ (23)

• collapse: internal pressure smaller than gravity, which happens if M
is large, or the temperature small (small pressure)

Jeans mass
Jeans mass is the minimum mass for galaxy formation
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Jeans-scale: derivation

• initially: spherical gas cloud of radius R and mass M

• compress cloud slightly: pressure wave will propagate through it,
and establish new equilibrium

• pressure equilibration = sound crossing time tsound = R
cs

• gravitational collapse = free-fall time scale tgrav = 1√
Gρ

• compare time scales

• tgrav > tsound pressure wins, system settles in new equilibrium
• tgrav < tsound gravity wins, system undergoes spherical collapse

• Jeans length RJ = cstgrav allows to determine Jeans mass MJ :

MJ =
4π
3
ρ
(RJ

2

)3

=
π

6
c3

s

G1.5ρ0.5 (24)
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stability of elliptical galaxies

• stabilisation of elliptical galaxies→ velocity dispersion
• Jeans equations are 2 coupled nonlinear PDEs for the evolution of

collisionless systems
• first moment: continuity

∂ρ

∂t
+ div(ρ~υ) = 0 (25)

• second moment: momentum equation

∂~υ

∂t
+ ~υ∇~υ = −∇Φ − div(ρσ2) (26)

• no viscosity, and velocity dispersion tensor σ2
ij = 〈υiυj〉 − 〈υi〉〈υj〉

emulates (possibly anisotropic) pressure

• gravitational potential: self-consistently derived from Poisson’s
equation ∆Φ = 4πGρ, closed system!

• in a virialised elliptical galaxy, σij corresponds to 〈V〉 → stability
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stability of spiral galaxies

• collisionless fluids can not build up pressure against gravity

• a rotating system can provide force balancing→ centrifugal force

• spin-up: explained by tidal torquing

• spin-parameter λ

λ ≡ ω

ω0
=

L/(MR2)√
GM/R3

=
L
√

E
GM5/2 (27)

• specific angular momentum necessary for rotational support
• λ ' 1/2 in spirals in ΛCDM cosmologies, rotation is the dominant

supporting mechanism

question
why is the definition of λ sensible?
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SAURON observations of galaxies

source: SAURON experiment
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galaxy morphologies: ’tuning fork’ diagramme

source: wikipedia
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merging of haloes

• contary to Hubble’s hypothesis: merging activity and tidal interaction
influence galaxy morphologies and convert spirals into ellipticals→
density-morphology relation

• confusing nomenclature remains:
elliptical early-type old stars

spiral late-type young stars

• merging generates heavy haloes from low-mass systems and wipes
out the kinematical structure by violent relaxation
→ bottom-up structure formation

• merging activity depends on the cosmology, and causes the mass
function to evolve
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density-morphology relation

density-morphology relation, source: Dressler et al. (1980s)
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galaxy clusters

Perseus cluster (source: NASA/JPL) Virgo cluster (source: USM)

• largest, gravitationally bound objects, with M > M∗
• quasar host structures at high redshift
• historically

• visual identification (Abell catalogue)
• need for dark matter: dynamical mass� sum of galaxies (Zwicky)

• large clusters have masses of 1015M�/h and contain ∼ 103 galaxies
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X-ray emission of clusters

• the intra-cluster medium of clusters of galaxies is so hot (T ' 107K)
that is produces thermal X-ray radiation

• the plasma is in hydrostatic equilibrium with gravity, therefore the
density profile can be computed

dp
dr

= −GM(r)
r2 ρ→ kBT

m
dρ
dr

+
ρkB

m
dT
dr

= −GM
r2 ρ (28)

for ideal gas with p = ρkBT/m

• determination of mass: from measurement of the density and
temperature profile:

M(r) = − rkBT
Gm

(
d ln ρ
d ln r

+
d ln T
d ln r

)
(29)

question
what can one do if the cluster is not spherically symmetric?
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X-ray emission of clusters: ROSAT data

VIRGO cluster as seen by ROSAT

• cluster is in hydrostatic equilibrium

• X-ray emissivity is ∝ √Tρ2 → fuzzy blobs
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scaling relations

scaling relation between LX and M from the ROSAT survey

• virial relation allow the prediction of simple scaling relations
• valid for fully virialised systems, where the temperature reflects the

release in gravitational binding energy
• potential energy 〈V〉 ∝ −GM2/R
• size M ∝ R3 → 〈V〉 ∝ −M5/3

• kinetic energy 〈T〉 ∝ TM
• virial relation 2〈T〉 = −〈V〉 → T ∝ M2/3

• X-ray luminosity LX ∝ M2
√

T/R3 ∝ M4/3 ∝ T2
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summary

• dark matter objects form by gravitational collapse

• stable solutions are admissible, particles moving inside their own
collective potential, typical profiles: NFW, isothermal

• number density and fluctuations statistics can be derived from the
power spectrum with the Press-Schechter formalism

• mass function contains cosmological information, in particular Ωm

and σ8, some sensitivity on w

• presence of baryons: Jeans argument, minimal mass for galaxy
formation due to pressure equilibration

• stability of galaxies: rotational stabilisation for spirals, velocity
dispersion for ellipticals

• assembly of massive objects by merging

• galaxy clusters: most massive virialised objects, scaling relations
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